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A B S T R A C T :  The similarity principles of the probability characteristics 
of the stationary process of pressure pulsation at the boundary of an 
open liquid flow have been tested experimentally. The investigations 
were conducted in the laboratory on an ideal hydraulic jump in the 
range of characteristic Reynolds numbers from 4.7 x 104 to 3.7 X l0 s 
and at the same Froude number (33) in the initial section of the jump. 
The scale of the flow was changed by factors of two and four. Mea- 
surements were taken at different points along the length of the jump. 
Pulsations whose spectrum was in the range from 0 to 50 cps were re- 
corded. The records were processed on an electronic digital computer, 
It has been established that the probability characteristics of low-fre- 
quency pressure pulsations in an open flow are scaled in accordance 
with rules based on the laws of gravitational similarity of the phenom- 
ena. The problem of the form of the one-dimensional distribution law 
is briefly examined. 

In solving problems connected with pressure pulsations in a li- 
quid flow, it is important to know the rules for scaling the probability 
characteristics of the phenomenon from one flow scale to another. 
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Fig. 1 

The basic laws of similarity of pulsation processes in a turbulent flow 
can be obtained in the usual manner from the differential equations 
of hydrodynamics. The Euler and Strouhat numbers acquire special 
importance in analyzing turbulent pressure pulsations, since it is pre. 
cisely these dimensionless complexes which should be employed in 
scaling the amplitude and frequency characteristics, 

In order to study the similarity principles of pressure pulsations, 
systematic laboratory investigations of pressure pulsations at the bot- 
tom of an open flow in the region of a hydraulic jump were undertak- 
en. The results of similar investigations set forth, for example, in 
[1-4], * are not sufficiently complete and in some respects contradic- 
tory. The behavior of the statistical characteristics of pressure pul- 
sations with change in the geometric scale of the flow is considered 
below. 

The experiments were conducted on an ideal hydraulic jump in 
a flume with a smooth horizontal bottom. The initial cross section of 
the jump was at a distance from the line of the flat sluice gate equal 
to twice the opening of the latter (Fig. 1). We shall describe the re- 
suits of experiments conducted at three different geometric scales 
(k = 1, 2, and 4) with the same Froude number in the initial cross sec- 
tion of the jump 
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The dimensions of the flow (in centimeters) to the maximum 
scale (X = 1) are shown in Fig. 1. The width of the flow was not mod- 
eled, and was equal to 80 cm, that is, about 1.5 times the maximum 
height o f  the jump. The Reynolds number R = q/v ranged from 4.7 X 

�9 Reviews of other studies of this problem are given in [2, 3]. 

x 104 to 3.7 x 105 (at k = 1) (q is the specific flow rate, and v the 
kinematic viscosity). 

Pressure probes of the strain gauge type were installed along the 
axis of the flume. Their receiving areas were modeled in accordance 
with the geometric scale (at k = 4, the diameter Of the receiving area 
was 7.5 ram). The statistical characteristic of the probes was linear 
over the entire working range and was reproducible correct to 3% after 
several months of use. 

Figure 2 gives the frequency characteristics of the individual 
components of the measuring channel: 1) probe, 2) 8ANCh-TM amplifier, 
and a) electrical low-frequency filter and loop of 9SO-1 oscilliscope 
(East German) In this figure, f is the frequency. A/A 0 the gain, and 
~o the phase shift at frequency f. In the frequency range from 0 to 
60 eps, the amplitude-frequency characteristics are almost constant 
and the phase-frequency characteristics are linear. Taking this into 
consideration and also the stationarity (in the probabilistic sense) of 
the processes under investigation, one may conclude that a pulsation 
whose spectrum is within this frequency range is recorded without im- 
portant distortions The presence of an electric filter in the measuring 
circuit makes it possible to exclude high-frequency noise that con- 
siderably exceeds the useflJ1 signal in this frequency range. 

The pressure pulsations p(t) obtained in records on the oscillo- 
graph tape were processed on an electronic digital computer in order 
to obtain the following statistical characteristics of the process, which 
was stationary: 

T T 

<p) = ~ -  p(t) dt, as = 7  [p'(t)]2dt, (1) 
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p~ =~@, ! [p' (t)]~dt, lx, =~t--i~F I [p" (t)]4dt, (3) 

0 0 

q~ (x) = p ~p (0 < x) .  (4) 

Here <p> is the averaged pressure; o the mean square value of 
pressure pulsa:ions; r(t) the normalized autocorrelation function; gs 

and ~t 4 are the coefficients of skewness and kurtosis respectively; ~(x) 
is the operator for finding the statistical probability (frequency) of the 
event indicated in parentheses; t, T, r represent time; p' (t) = p (t) -- 
-<p>. 
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Fig. 3 

The averaging period T was taken (as a result of check compu- 
tations) to be no less than:* 50 sec for k = 1, 36 sec for k = 2, and 
25 sec for X = 4. Such a high value (about t00 periods of the lowest 
puIsation frequency) was connected with the  nonstationarity of  the 1 m-  
sition of the jump relative to the probe. The large value of T is also 
explained by the insensitivity, noted during the check computations, 
of  these statistical characteristics to changes in the quantization step 
of  the processes in t ime At from 0. 008 to 0 .04 sec (from 10 to 2 points 
for the smallest pulsation period). This made it possible to lay out the 
ordinates with the same step At = 0. 008 sec at all three scales X. 

As is known from analyses of  the Navier-Stokes equations, all 
aI1 the following numbers should in general be equal in nature and in 
the  model in similar hydrodynamic phenomena: Froude F, Reynolds R, 
Euler E, and Strouhal S (the principal numbers for the majority of  
cases):. 

Vo ~ volo E = 6pc S lo 
F = ~ ,  B = ~ ,  pro' =vot-~" 

where inertial and gravitational forces play the predominant parts, 
even at comparatively small  Reynolds numbers, self-similarity is 
achieved with respect m the Reynolds number and the  only charac- 
teristic criterion for the averaged flow parameters is the Froude num-  
ber. 
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Fig. 4 

Here v0, 10, to, 6P0 are the  characteristic values of  the velocity, 
length, t ime,  and pressure, respectively; g is the accelerat ion of  grav- 
ity, u is the viscosity, and p the density. In hydrodynamic phenomena 

*This relationship of m i n i m u m  averaging periods in different 
linear scales X corresponds to the law of t ime  scaling in modeling 
phenomena according to the laws of gravitational similari ty.  

In the case of the probability characteristics of a pulsation pro- 
cess, however, the assumption of self-similarity with respect to Rey- 
nolds numbers and the decisive role of  the Froude number (Froude 
modeling) requires experimental  c0nfirmation. Here we have in mind 
that it is necessary to make use of the Euler and Strouhal numbers in 
order to scale the amplitude and frequency characteristics of  pressure 
pulsations [5]. 

From the practical standpoint, the low-frequency part of the 
pressure pulsation spectrum is the most interesting. According to mod-  
ern ideas of  turbulence theory, the large-scale vortices "responsible" 
for these frequencies are complete ly  de'fined by averaged motion. 
Thus, the above-mentioned assumptiom concerning this part of  the 
pressure pulsation spectrum are fully justified. As for smal l -sca le  tur- 
bulence, we can expect more complicated modeling laws. 

Now, on the basis of  previously obtained experimental  data, we 
shall test the relationships which follow from the modeling principles 
set forth above (the subscript 1 corresponds m k = 1, while the subscript 
X corresponds to the scale X # 1) 

<p:> = ~, <p>+>, : :  = ~,~., (5) 

r, ( 0  - %, (* I 1/-:~+), (6) 
l ' z - -  <p>) ~ 
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The table illustrates the behavior of the numerical  characteris- 
tics of the pressure pulsations with change in the geometric scale X 
(<p> and cJ are given in mil l imeters  of water column). The quantity 
rl = l / l  n denotes the distance from the initiat cross section of the jump 
in fractions of the length of the horizontal projection of the cylinder 
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l n computed by means of M. D. Chertousov's formula [6].* The maxi- 
mum deviation obtained in the experiments was equal to 

a ~  ~ 1 0 0 %  = 7%. 

This ts evidence that the mean square value can be modeled by 
Froude modeling. The coefficients of skewness and kurtosis are most 
sensitive to experimental and processing errors owing to their small- 
ness. Their behavior pattern with change in scale was not observed, 
thus the data in the table do not refute (7). 

Normalized autocorrelation functions scaled according to (6) for 
k = 1 are presented in Fig, 3 as an illnstration, Figs. 3a and 3b corres- 
ponding to values of ~1 = 0.4 and 1.0. In this and the following figures. 
the points correspond to X = 1, the crosses to ), = 2, and the triangles 
to k = 4. These functions agree satisfactorily along the entire length of 
the jump. 

The one-dimensional integral laws of distribution of centered 
and normalized ordinates of processes written in different scales and at 
points with coordinates ~ = 0.4 and 1.0 are plotted in Figs. 4a and 4b. 
A check showed that all the points lie well within the confidence re- 
gions [7] whose boundaries correspond to 10% (Fig. 4a) and even 50% 
(Fig. 4b) fidueial probahility. Two conclnsions follow from this. In the 
first place, there are no grounds for refuting the hypothesis that dif- 
ferent samples belonging to the same general population, that is, the 
coincidence of centered and normalized distribution laws on models 
of equai scale. In the second place, errors m determining the distri- 
bution laws connected with the finiteness of the averaging period T 
turned out to be insignificant (in this connection, the conclusions con- 
cerning Fig. 4c are more convincing). Similar results also hold for 
other points along the length of the jump. Thus. the above-mentioned 
probability characteristics in the low-frequency part of the pressure 
pulsation spectrum can be modeled by Froude modeling in all zones of 
the hydraulic jump. 

In conclusion, we shall consider the problem of the form of the 
distribution law. In Fig. 4c, the solid lines define the confidence re- 
gion of the normal distribution law m accordance with A. N. Kolmo- 
gorov's criterion. In this case, the fiducial probability is taken to be 

*The length of the jump considered here serves only to determine 
the coordinates of the measuring points, thus the selection of this or 
that empirical formula (satisfying the requirements of similariry the- 
ory) is not of fundamental importance. For the same Froude number, 
the corresponding linear dimensions vary according to a linear scale. 

equal to 8%. The points correspond to the experimental distribution 
law obtained by averaging over all scales with 7] = 0.4. The fact that 
a part of the experimental points lie outside the boundaries of the fair- 
ly wide confidence region is evidence that the distributions obtained 
in the experiments differ from the normal distribution. The substantial 
values of the excesses given in the table lead to the same concinsion. 

However, when applying the statistical method, the difference 
between the processes considered and normal processes may be neglec- 
ted in some cases. For example, Fig 5 illustrates satisfactory agree- 
merit of normalized autocorrelation functions calculated 1) from the 
general algorithm (2), and 2) from the algorithm r(r) = cosrr~, which 
is valid onIy for normal processes. Here ~ is the probability that the 
ordinates of a centered process taken with step v are of the same sign. 

The authors thank E. M. Romanov and E. I. Khakhllev for build- 
ing the probes and adjusting the measuring apparatus and A. V. Dani- 
kov, who participated in processing the experimental data. 
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